Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control.
The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), water micro-collecting farming in winter fallow (WW), hole seeding on film (HF), hole seeding on film in winter fallow (HW) were compared to determine the effects of mulching methods on soil water collecting and conservation during millet growth periods of 2003-2004, as well as the variation tendency of water content after rainfall, output of millet and water use efficiency (WUE). The experimental results in the two successive years indicated that water micro-collecting farming had a better function of collecting water after rainfall, and side infiltrated water was stored under the ridges and the top layer 0-40 cm soil water changes were great. WF had obvious role in water collection and preservation of soil moisture. It effectively improved the water supply capacity by about 19.05% in the end of growth seasons. The storage of HW and WW increased by 24.9 and 7.1 mm compared with CK, and output of yield were obviously increased. Film mulching increased the yield of millet and enhanced water use efficiency (WUE). During different growth periods, WF exhibited better water storage function with lower water consumption, and demonstrated optimal social and ecological benefits.
LIAO Yun-cheng ZHANG De-qi JIA Zhi-kuan ZHANG Li LU Yang-ming