A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information(LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.