The discovery of high temperature superconductivity in single-layer FeSe/SrTiO3 provides a new platform for ex- ploring superconductivity and pursuing higher Tc (superconducting transition temperature) through fabricating artificial heterostructures. In this paper, we review the recent progress in studying and tuning the interfacial superconductivity in single-layer FeSe, through the combined in-situ spectroscopic studies and atomic-scale engineering. By fabricating arti- ficial heterostructures, various interfacial factors were tuned, and the corresponding evolutions of electronic structure and superconducting gap behavior were investigated. These studies enrich the current understanding on the interfacial superconductivity, and provide clues for further enhancing Tc through interface engineering.
We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that Fe Se thin film grown on Nb-doped Sr Ti O3 substrate has an onset TC* 65 K,which is the highest among all iron-based superconductors discovered so far.
Zuocheng ZhangYi-Hua WangQi SongChang LiuRui PengK.A.MolerDonglai FengYayu Wang
Quantum decoherence in organic charge transport is a complicated but crucial topic. In this paper, several theoretical approaches corresponding to it, from incoherent to coherent, are comprehensively reviewed. We mainly focus on the physical insight provided by each theory and extent of its validity. The aim of this review is to clarify some contentious issues and elaborate on the promising perspectives provided by different approaches. The device model approaches based on both continuous and discretized treatments of the transporting layer will be first discussed. The prominent focus of this review will be devoted to the dynamic disorder model and its variants considering that it is the most promising approach to tackle charge transport problems in organic materials. We will also address other theories such as the variational method.