We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.
With first-principles virtual-crystal approximation calculations, we systematically investigate the geometric and elec- tronic structures as well as the phase transition of lead zirconate titanate (PbZr 1-xTixO3 or PZT) as a function of Ti content for the whole range of 0 〈 XTi 〈 1. It can be found that, with the increase of the Ti content, the PbZr1-xTixO3 solid solutions undergo a rhombohedral-to-tetragonal phase transition, which is consistent with the experimental results. In addition, we also show the evolution in geometric and electronic structures of rhombohedral and tetragonal PbZr1-xTixO3 with the increasing content of Ti.