您的位置: 专家智库 > >

国家自然科学基金(61202033)

作品数:3 被引量:0H指数:0
相关作者:王黎维彭智勇王梁刘东明李佳瑾更多>>
相关机构:武汉大学更多>>
发文基金:国家自然科学基金国家高技术研究发展计划河北省自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇自动化与计算...

主题

  • 1篇信息管理
  • 1篇信息管理系统
  • 1篇生物实验
  • 1篇溯源信息
  • 1篇OVER
  • 1篇POSITI...
  • 1篇SETS
  • 1篇SUPPOR...
  • 1篇DEPEND...
  • 1篇LEVEL
  • 1篇LINEAG...
  • 1篇VARIOU...
  • 1篇ATTRIB...
  • 1篇DEPEND...

机构

  • 1篇武汉大学

作者

  • 1篇李佳瑾
  • 1篇刘东明
  • 1篇王梁
  • 1篇彭智勇
  • 1篇王黎维

传媒

  • 2篇Wuhan ...
  • 1篇计算机研究与...

年份

  • 1篇2016
  • 1篇2014
  • 1篇2013
3 条 记 录,以下是 1-3
排序方式:
Attribute Level Lineage in Uncertain Data with Dependencies
2016年
In uncertain data management, lineages are often used for probability computation of result tuples. However, most of existing works focus on tuple level lineage, which results in imprecise data derivation. Besides, correlations among attributes cannot be captured. In this paper, for base tuples with multiple uncertain attributes, we define attribute level annotation to annotate each attribute. Utilizing these annotations to generate lineages of result tuples can realize more precise derivation. Simultaneously,they can be used for dependency graph construction. Utilizing dependency graph, we can represent not only constraints on schemas but also correlations among attributes. Combining the dependency graph and attribute level lineage, we can correctly compute probabilities of result tuples and precisely derivate data. In experiments, comparing lineage on tuple level and attribute level, it shows that our method has advantages on derivation precision and storage cost.
WANG LiangWANG LiweiPENG Zhiyong
关键词:DEPENDENCY
生物实验信息管理系统
2013年
随着生物信息化的快速发展,实验数据的收集、分析和管理方面的需求使得实验室信息管理系统的应用日益广泛.除了传统的数据统计和分析,如何对实验流程进行管理也逐渐成为一个研究重点.针对现有实验室信息管理系统的不足,生物实验信息管理系统实现了实验注册、实验流程的创建、动态修改和增量执行、溯源信息的存储和显示.在实验流程创建的过程中,通过合理性验证算法保证流程可以正确地执行.通过记录实验的溯源信息可追溯实验流程执行过程中的所有信息,并可导出为实验报告,用于存档和共享.
王黎维付祖发刘东明王梁李佳瑾彭智勇
关键词:溯源信息
Supporting Various Top-k Queries over Uncertain Datasets
2014年
There have been many researches and semantics in answering top-k queries on uncertain data in various applications. However, most of these semantics must consume much of their time in computing position probability. Our approach to support various top-k queries is based on position probability distribution (PPD) sharing. In this paper, a PPD-tree structure and several basic operations on it are proposed to support various top-k queries. In addition, we proposed an approximation method to improve the efficiency of PPD generation. We also verify the effectiveness and efficiency of our approach by both theoretical analysis and experiments.
LI WenfengFU ZufaWANG LiweiLI DeyiPENG Zhiyong
共1页<1>
聚类工具0