The exit wave function including zero and high order Laue zones has been simulated by both multi-slice method and electron dynamic diffraction analytical expression. Coincidence of the simulations by these two methods was achieved. The calculated results showed that the exit wave function highly dominated by zero order Laue zone, while high order ones modify the exit wave function to some extent depending on the situation. High order Laue zone effects become important for the following cases: sample consists of light elements, the thickness is very thin, lattice planar spacing perpendicular to the direction of the incident beam is large, and the electron beam has long wavelength. In these cases the exit wave function should be corrected by adding high order Laue zone effects. The analytical expression is effective and convenient for dealing with high order Laue zone effects.