The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process.The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by using an on-line continuous optical photometric dispersion analyze and the analysis of water quality.Experimental conditions such as alum dosage,pH value for coagulation,stirring intensity and initial turbidity were extensively examined.The photometric dispersion analyze results showed that coagulation of kaolin suspensions with two coagulants(alum and polyaluminium chloride) could be taken as a two-phase process:slow and rapid growth periods.Operating conditions with higher coagulant doses,appropriate pH and average shear rate might be particularly advantageous.The rate of overall floc growth was mainly determined by a combination of hydraulic and water quality conditions such as pH and turbidity.The measurement of zeta potential indicates that polyaluminium chloride exhibited higher charge-neutralizing ability than alum and achieved lower turbidities than alum for equivalent Al dosages.Under the same operating conditions,the alum showed a higher grow rate,but with smaller floc size.