In this paper, we prove that the second order differential equation d^2x/dt^2+x^2n_1f(x)+p(t)=0with p(t + 1) = p(t), f(x + T) = f(x) smooth and f(x) 〉 0, possesses Lagrangian stability despite of the fact that the monotone twist condition is violated.
In this paper, we study the planar Hamiltonian systemwhere where f is real analytic in x and θ,A(θ) is a 2×2real analytic symmetric matrix,J=(1^-1) and w is a Diophantine vector. Under the assumption that the unperturbed systemreducible and stable, we obtain a series of criteria for the stability and instability of the equilibrium of the perturbed system.