A nonautonomous predator-prey difference model with Beddington-DeAngelis functional response, diffusion, and time delays is investigated. The model consists of n competing preys and one predator, and the predator and one prey are confined to one patch. First, eon^pts and results concerning the continuation theorem of coincidence degree are summarized. Then, a system of algebraic equations is proved to have a unique solution. Finally, the sufficient conditions for the existence of a difference system are established. The result is substantiated through numerical simulation.