From the potential theorem, the fundamental boundary eigenproblems can be converted into boundary integral equations (BIEs) with the logarithmic singularity. In this paper, mechanical quadrature methods (MQMs) are presented to obtain the eigensolutions that are used to solve Laplace's equations. The MQMs possess high accuracy and low computation complexity. The convergence and the stability are proved based on Anselone's collective and asymptotical compact theory. An asymptotic expansion with odd powers of the errors is presented. By the h3-Richardson extrapolation algorithm (EA), the accuracy order of the approximation can be greatly improved, and an a posteriori error estimate can be obtained as the self-adaptive algorithms. The efficiency of the algorithm is illustrated by examples.
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.