In many longitudinal studies, observation times as well as censoring times may be correlated with longitudinal responses. This paper considers a multiplicative random effects model for the longitudinal response where these correlations may exist and a joint modeling approach is proposed via a shared latent variable. For inference about regression parameters, estimating equation approaches are developed and asymptotic properties of the proposed estimators are established. The finite sample behavior of the methods is examined through simulation studies and an application to a data set from a bladder cancer study is provided for illustration.
Distribution estimation is very important in order to make statistical inference for parameters or its functions based on this distribution. In this work we propose an estimator of the distribution of some variable with non-smooth auxiliary information, for example, a symmetric distribution of this variable, A smoothing technique is employed to handle the non-differentiable function. Hence, a distribution can be estimated based on smoothed auxiliary information. Asymptotic properties of the distribution estimator are derived and analyzed. The distribution estimators based on our method are found to be significantly efficient than the corresponding estimators without these auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.
In this paper, the unknown link function, the direction parameter, and the heteroscedastic variance in single index models are estimated by the random weight method under the random censorship, respectively. The central limit theory and the convergence rate of the law of the iterated logarithm for the estimator of the direction parameter are derived, respectively. The optimal convergence rates for the estimators of the link function and the heteroscedastic variance are obtained. Simulation results support the theoretical results of the paper.
WANG YanHua1, LI XiaYan2, WANG QiHua3 & HE ShuYuan4 1School of Sciences, Beijing Institute of Technology, Beijing 100081, China
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
In this article, we propose a general additive-multiplicative rates model for recurrent event data. The proposed model includes the additive rates and multiplicative rates models as special cases. For the inference on the model parameters, estimating equation approaches are developed, and asymptotic properties of the proposed estimators are established through modern empirical process theory. In addition, an illustration with multiple-infection data from a clinic study on chronic granulomatous disease is provided.