This paper concerns a discrete-time Geo/Geo/1 retrial queue with both positive and negative customers where the server is subject to breakdowns and repairs due to negative arrivals. The arrival of a negative customer causes one positive customer to be killed if any is present, and simultaneously breaks the server down. The server is sent to repair immediately and after repair it is as good as new. The negative customer also causes the server breakdown if the server is found idle, but has no effect on the system if the server is under repair. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating function of the number of customers in the orbit and in the system are also obtained, along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, we present some numerical examples to illustrate the influence of the parameters on several performance characteristics of the system.
A bulk-arrival single server queueing system with second multi-optional service and unreliable server is studied in this paper. Customers arrive in batches according to a homogeneous Poisson process, all customers demand the first "essential" service, whereas only some of them demand the second "multi-optional" service. The first service time and the second service all have general distribution and they are independent. We assume that the server has a service-phase dependent, exponentially distributed life time as well as a servicephase dependent, generally distributed repair time. Using a supplementary variable method, we obtain the transient and the steady-state solutions for both queueing and reliability measures of interest.
This paper is concerned with the analysis of a feedback M^[X]/G/1 retrial queue with starting failures and general retrial times. In a batch, each individual customer is subject to a control admission policy upon arrival. If the server is idle, one of the customers admitted to the system may start its service and the rest joins the retrial group, whereas all the admitted customers go to the retrial group when the server is unavailable upon arrival. An arriving customer (primary or retrial) must turn-on the server, which takes negligible time. If the server is started successfully (with a certain probability), the customer gets service immediately. Otherwise, the repair for the server commences immediately and the customer must leave for the orbit and make a retrial at a later time. It is assumed that the customers who find the server unavailable are queued in the orbit in accordance with an FCFS discipline and only the customer at the head of the queue is allowed for access to the server. The Markov chain underlying the considered queueing system is studied and the necessary and sufficient condition for the system to be stable is presented. Explicit formulae for the stationary distribution and some performance measures of the system in steady-state are obtained. Finally, some numerical examples are presented to illustrate the influence of the parameters on several performance characteristics.
Jinting WANG Peng-Feng ZHOU Department of Mathematics,School of Science,Beijing Jiaotong University,Beijing,China