In this article, the relationship between the Borel direction of algebroidal function and its coefficient functions is studied for the first time. To begin with, several theorems of algebroidal functions in unit disk are proved. By these theorems, some interesting conclusions are obtained.
The main purpose of this paper is to study the lower order and type of second order differential equation w"(z)-A(z)w=0,where A(z)is a polynomial.In the case of A(z)=a_dz^d,the authors prove that the lower order and the type of all non-trivial solutions w of w"(z)-A(z)w=0 are equal to(d+2)/2 and(2(|a_d|)^(1/2))/(d+2)respectively.In the case of A(z)=a_dz^d+a_(d-1)z^(d-1)+…a_1z+a_0,a_d>0,a_(d-1)>0,…,a_1≥0,a_0≥0,the authors prove that the lower order of all non-trivial solutions w of w"(z)-A(z)w=0 is(d+2)/2.
In this article, some facts of the value distribution theory for meromorphic func- tions with maximal deficiency sum in the plane will be considered in the punctured plane, and also the relationship between the deficiency of meromorphic function in the punctured plane and that of their derivatives is studied.
The author proves that if f : C → C^n is a transcendental vector valued mero-morphic function of finite order and assume, This result extends the related results for meromorphic function by Singh and Kulkarni.