Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, different nodes' accesses to different resources are determined by their contribution. Therefore, the heterogeneous resources of virtual organizations in large-scale Grid can be effectively integrated, and the key node failure as well as system bottleneck in the traditional Grid environment is eliminated. The experimental results indicate that this management mechanism can achieve better average performance in the Grid environment and maintain the P2P characteristics as well.
The design and evaluation of accelerated transmission (AT) systems in peer-to-peer networks for data transmission are introduced. Based on transfer control protocol (TCP) and peer-to-peer (P2P) substrate networks, AT can select peers of high performance quality, monitor the transfer status of each peer, dynamically adjust the transmission velocity and react to connection degradation with high accuracy and low overhead. The system performance is evaluated by simulations, and the interrelationship between network flow, bandwidth utilities and network throughput is analyzed. Owing to the collaborative operation of neighboring peers, AT accelerates the process of data transmission and the collective network performance is much more satisfactory.