Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering in the salt bath after hot rolling was investigated. The effect of isothermal holding time on mechanical properties was studied through examining of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and a significant amount of stable retained austenite. Strain-induced transformation to martensite of retained austenite and TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holding led to cementite precipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%, and 25608 MPa.%, respectively.
为了解决由于织构漫散度给织构分析带来的估算误差,以达到对材料织构进行更为精确的分析,采用从极图求算ODF(orientation distribution function)中的"二步法"作为基本原理,选择以1°为最小间隔单位划分欧拉空间,对欧拉空间所有取向点的取向密度进行了求算,并建立了相应的分析系统.利用该分析系统对鞍钢生产的IF钢冷轧和退火样品进行了计算,并与已成熟的以欧拉角5°为最小间隔单位的ODF求算系统对比.结果表明:以欧拉角1°为最小单位的ODF取向密度分析系统比以欧拉角5°为最小单位的ODF取向密度分析能更确切地表示织构的分布情况.
Considering the effect of strain and chemical composition onprecipitation behavior, new models for the start and end time of Nb(C,N) precipitation in austenite under the conditions of different temperatures and strains have been investigated for Nb microalloyed steel. The value of n in the precipitation kinetic equation has been determined by using the available experimental data in literature, which indicated that n is a constant and independent of temperature. The values of the start and end time of the predicted precipitation are compared with the experimental values. Calculated results are in good agreement with the experimental results. Also, the evolution of austenite grains before ferrite transformation is simulated by taking the effect of precipitation into consideration. The measured austenite grain size is in good agreement with predicted one prior to ferrite transformation.
ZHOU Xiao-guang LIU Zhen-yu YUAN Xiang-qian WU Di WANG Guo-dong LIU Xiang-hua
The effect of austempering on the mechanical properties of the hot rolled Si- Mn TRIP steels was studied. The mechanism of transformation induced plasticity (TRIP) was discussed through the examination of the microstructure and the mechanical properties of the specimens. The results stow that the microstructures of the steels were comprised of polygonal ferrite, granular bainite and a significant amount of stable retained austenite. The specimen exhibits excellent mechanical properties for the TRIP effect. Isothermal holding time for austempering affects the stability of retained austenite. The mechanical properties such as tensile strength, total elongation and strength ductility balance reach their optimal values ( 776 MPa , 33% and 25608 MPa% , respectively) when the specimen is held at 400℃ for 25 min.
On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.
The existing forms of N and Al in HSLC (high strength low carbon) steel produced by TSCR (thin slab casting and rolling process), the precipitation thermodynamics and kinetics of AlN, and its effects on structure and mechanical property are studied. The experimental results show that only a small quantity of nitrogen is com- bined into AlN in HSLC steel produced by TSCR and most of the nitrogen in steel is still free nitrogen. Aluminum-nitride is mainly precipitated during the period of slow air cooling after coiling, but not during rolling and water cooling. The acid-soluble aluminum has no obvious effect on the grain size and mechanical property of HSLC steel produced by TSCR whose acid-soluble aluminum content is 0.005%―0.043%. The precipitation of AlN is not the main cause of grain refinement of HSLC steel produced by TSCR, nor is AlN the dominating precipitate that has precipitation strengthening effect. The nano nitrides are not pure AlN, but have complex compositions.
FU Jie1, LIU YangChun1,2 & WU HuaJie1,3 1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China