The authors investigate the tail probability of the supremum of a random walk with independent increments and obtain some equivalent assertions in the case that the increments are independent and identically distributed random variables with Osubexponential integrated distributions.A uniform upper bound is derived for the distribution of the supremum of a random walk with independent but non-identically distributed increments,whose tail distributions are dominated by a common tail distribution with an O-subexponential integrated distribution.
The differences between two sequences of nonnegative independent and identically distributed random variables with sub-exponential tails and the random index are studied. The random index is a strictly stationary renewal counting process generated by some negatively associated random variables. Using a revised large deviation result of partial sums, the elementary renewal theorem and the central limit theorem of negatively associated random variables, a precise large deviation result is derived for the random sums. The result is applied to the customer-arrival-based insurance risk model. Some uniform asymptotics for the ruin probabilities of an insurance company are obtained as the number of customers or the time tends to infinity.
Let{Yi;-∞〈i〈∞}be a doubly infinite sequence of identically distributed φ-mixing random variables and let{ai;-∞〈i〈∞}be an absolutely summable sequence of real numbers. In this paper we study the moments of sup n〉1k=1-|∞∑^n∑^∞aiYi+k/n^1/r|^p(1〈r〈2,P〉0)under the conditions of some moments.
This paper considers the upper orthant and extremal tail dependence indices for multivariate t-copula. Where, the multivariate t-copula is defined under a correlation structure. The explicit representations of the tail dependence parameters are deduced since the copula of continuous variables is invariant under strictly increasing transformation about the random variables, which are more simple than those obtained in previous research. Then, the local monotonicity of these indices about the correlation coefficient is discussed, and it is concluded that the upper extremal dependence index increases with the correlation coefficient, but the monotonicity of the upper orthant tail dependence index is complex. Some simulations are performed by the Monte Carlo method to verify the obtained results, which are found to be satisfactory. Meanwhile, it is concluded that the obtained conclusions can be extended to any distribution family in which the generating random variable has a regularly varying distribution.
Consider a discrete-time insurance risk model. Within period i, i≥ 1, Xi and Yi denote the net insurance loss and the stochastic discount factor of an insurer, respectively. Assume that {(Xi, Yi), i≥1) form a sequence of independent and identically distributed random vectors following a common bivariate Sarmanov distribution. In the presence of heavy-tailed net insurance losses, an asymptotic formula is derived for the finite-time ruin probability.
Consider two dependent renewal risk models with constant interest rate. By using some methods in the risk theory, uniform asymptotics for finite-time ruin probability is derived in a non-compound risk model, where claim sizes are upper tail asymptotically independent random variables with dominatedly varying tails, claim inter-arrival times follow the widely lower orthant dependent structure, and the total amount of premiums is a nonnegative stochastic process. Based on the obtained result, using the method of analysis for the tail probability of random sums, a similar result in a more complex and reasonable compound risk model is also obtained, where individual claim sizes are specialized to be extended negatively dependent and accident inter-arrival times are still widely lower orthant dependent, and both the claim sizes and the claim number have dominatedly varying tails.