Sea cucumber Apostichopus japonicus samples were collected in Changdao, Penglai (PL), 27 individuals, and Lingshandao, Qingdao (QD), 30 individuals, in the Shandong Peninsula, China. Ten SSR primers were used to assess the genetic variation and relationship between and within the two stocks. Respectively, for each stock, the percentage of polymorphic bands was 85.2% and 86.9%; the gene diver- sity was 0.360 5 and 0.342 8; and the Shannon’s information index was 0.515 0 and 0.499 0. At species level, the percentage of polymorphic bands was 92.2%, the total gene diversity was 0.378 9 and the Shannon’s information index was 0.550 4. The coefficient of overall genetic differentiation and the ge- netic distances between the stocks were also calculated to be 0.073 0 and 0.079 6 using the POPGENE program. Results show that the genetic diversity of the two stocks is still large but the genetic distance between the two stocks is close. A dendrogram was constructed for the 57 individuals from the two stocks, showing that the genetic structure was unitary for PL stock but complex for QD stock.
Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.
YU Li SHAO Mingyu BAO Zhenmin HU Jingjie ZHANG Zhifeng