In the case of the ski-jump type energy dissipation, the jet trajectory will be greatly affected by the air entrainment and the air resistance. It is necessary to consider those factors when estimating the trajectory of the jet flow. In this work, the effect of the air resistance on the jet trajectory is theoretically and experimentally investigated. A comprehensive resistance coefficient is proposed. To determine this coefficient, experiments of five models are conducted with the circular-shaped flip bucket placed at the point of the takeoff of ski jumps. It is shown that, this coefficient of the lower jet trajectory is only related to the approach flow Froude number, while that of the upper jet trajectory is dominated by both this Froude number and the deflection angle. Furthermore, the present methodology is validated by experimental data in this work and the maximum errors are not larger than 3.2% and 8.6% for the lower and upper jet trajectories, respectively.
Slit-Type Energy Dissipater (STED) has been a kind of important devices for energy dissipation. The flow through the STED is longitudinally extended and the velocity is decreased by means of the cross-section increase of the flow, which is closely related to geometric and hydraulic parameters of the STED. Therefore, it is necessary to investigate and control the hydraulic condi- tions through the STED, including the nappe section form, the conversion condition, and the effect of energy dissipation with the geometric and hydraulic parameters. In the present work, "I-type" and "T-type" nappe forms were experimentally classified, the con- version conditions of the nappe forms were empirically provided, and the effects of geometric parameters of the STED on energy dissipation were roughly analyzed. It is concluded that the contraction angle of the STED is a key factor influencing the hydraulic characteristics of the STED.
With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present paper, some issues about hydraulic characteristics were experimentally investigated by means of five slit-type outlets and four tetrahedrons, including the flow choking, impact to river banks and jet trajectory. The main findings are as follows. The critical Froude number for the flow choking decreases with increasing outlet width of the slit-type energy dissipater. If the flow Froude number is expressed by the parameters just before this energy dissipater, the tetrahedron placed inside the side wall of the outlet could efficiently avoid the flow impact to the river bank of same side, and compared with the jet trajectory of the slit-type energy dissipater, the outlet with tetrahedron has different trajectory trend, i.e., the distance of the jet trajectory decreases with the increase of the water head due to special form of the outlet tetrahedron.
With the constructions of high dam projects in China, the energy dissipation downstream of a dam becomes a serious concern. In this study, a multiple slit-type energy dissipater, with different reduction size slits in the outlet, is developed on the basis of conventional slit-type energy dissipaters, aiming to enhance the energy dissipation through the turbulence and the friction between the different layers of the jet flow and the air entrainment due to the increased surface of the flow to the air. The hydraulic characteristics of the energy dissipater are experimentally investigated by means of three sets of physical models in nine cases, to characterize the geometric parameters with suitable performance. The main concerns are the flow regime, the jet flow trajectory, the energy dissipation, the cavitation characteristics, and the flow choking. The results indicate that the dissipater enjoys a high energy dissipation ratio with suitable hydraulic performance comparing with the conventional slit-type energy dissipaters.
In this paper, the behavior of the flow choking, including the critical and developing states, was experimentally investiga- ted by means of five slit-type outlets, characterized by the outlet width, the contraction angle and the opening of the working gate. The results showed that the approach flow Froude number of the critical choking decreases if the outlet width increases, or the con- traction angle decreases, or the opening increases. There is the hysteresis when the flow choking develops, i.e., the Froude numbers of the appearance and disappearance of the flow choking at the increasing discharge regime are all larger than those at the decreasing discharge regime. For various widths of the outlets, the differences between the critical Froude numbers at small opening are much larger than thoset at large opening. The change range from appearance to disappearance of the flow choking at small opening is smaller than that at large opening.
The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Froude number for the flow choking to occur in those flip buckets. The error of the present method relative to the experimental data is less than 5%. The results show that, the Froude number for the flow choking to occur is related to the contraction ratio and the contraction angle of the flip buckets. When the flow choking occurs, the upper jet trajectory decreases and the lower one is almost not affected, and the dynamic pressures on the bottom and the sidewalls increase due to the flow profile rising on the flip buckets.