The Klobuchar model has been widely used to correct the ionospheric delay in applications. However, the NVTEC(Nighttime Vertical Total Electron Content) of the Klobuchar model employs an empirical constant of 9 TECU(Total Electron Content Unit) at L1 frequency. In this paper, the rationality and reliability of the nighttime constant setting are investigated using the GIM(Global Ionosphere Map) product of the IGS(International GNSS Service) from 1998 to 2015. Our study indicates that the suitable time span of NVTEC average in nighttime should be between 20:00 and 06:00 LT(local time). The NVTEC is highly correlated with seasons, having positive extremes in spring and autumn and negative extremes in summer through the mean values in all latitudes. In addition to seasonal dependence, solar activity in the solar cycle 23 strongly influences NVTEC as well and leads to its variation within a range between 25 and30 TECU in spring and autumn at solar maximum, which is about 1.5 times greater than that in summer and winter. The NVTEC also has a dependence on the latitude at solar maximum, with the mean value from 30 TECU in low latitudinal regions to 15 TECU in high latitudinal regions. Therefore, these results demonstrate that the nighttime VTEC has much greater deviations from the imperial constant in the Klobuchar model, and the newly estimated constant is expected to bring improvement to the predictability of the Klobuchar ionospheric delay model in nighttime.
The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generated under a wide variety of multilook factors and with very different noise level.However,the filter is a bit complicated and its application is still very limited.We present the designing and implementation of the variance-dependent Goldstein radar interferogram filtering,emphasizing on the logic flow,the generation of look-up table,the determination of filtering parameter,and the handling of edge information loss.Experiments with real interferograms are provided to demonstrate the applications of the designed filtering.Comparisons with the result of the coherence-dependent Goldstein filter show that improvements from 18.4% to 36.9% are achieved when the variance-dependent filter is used,and the noisier the interferogram,the greater the improvement.
A new strategy to realize precise absolute positioning for a single-frequency user is presented. In the presented strategy, the receiver clock and ambiguities are removed using the satelliteand epoch-differenced (SDED) algorithm. As a further development of the SDED algorithm, a regional augmentation network is used to generate the SDED atmospheric delays at the user. The weakened mathematic property due to the epoch-differenced operation is improved by adding the generated atmospheric delays and applying the robust estimation. To test the new approach, the 24-h data at 5 Continuous Operation Reference Station (CORS) stations in Shanghai is processed. The results show a more than 96% success rate, defined as the case where three directions achieve the desired positioning accuracy of 10 cm, when the observation is longer than 20 min. The 20-min static results show that the new method can reach an accuracy of 3.42, 4.76 and 9.26 cm in the North, East and Up directions, respectively. An experiment was carried out to assess the kinematic positioning. The results show that the kinematic positioning accuracy is 4.11, 5.31 and 4.05 cm in the north-south, east-west and height directions,respectively.
LI HaoJunTANG GuiFengHE FengWU BinHU XiaoGongCHEN YanLing