The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200-400°C, 400-900°C and 900-1200°C. The released volatiles from silicate mineral separates at 400-900°C and 900-1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from -20.86‰ to -12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantlederived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores an
FU PiaoerTANG QingyanZHANG MmgjieZHANG ZhaoweiLI LiwuLI Wenyuan
Elemental ratios Zr/Hf and Nb/Ta are expected to be constant and of chondritic value (-36.30 and -17.57, respectively) in mantle and mantle-derived rocks. Studies in recent years have shown, however, that these two ratios do vary in some of these rocks. For example, MORB-like seamount lavas from flanks of the East Pacific Rise (EPR) show a correlated Zr/Hf (-25-50) and Nb/Ta (-9-18) variation. These two ratios are also correlated with ratios of more incompatible over less incompatible elements (e.g., La/Sm, Rb/Cs, Th/U, Nb/U, Sm/Yb) and with radiogenic isotope ratios (e.g., 87 Sr/86Sr, 143Nd/144Nd). Furthermore, abyssal peridotites, which are melting residues for MORB, also show a huge correlated variation between Zr/Hf (-2.5-335) and Nb/Ta (-1-170). All these observations plus a correlated variation between Zr/Hf (-22-48) and Nb/Ta (-10-23) in lunar rocks are consistent with the Zr-Hf and Nb-Ta fractionation being of magmatic origin. This contrasts with the common view that geochemical processes cannot readily fractionate them. As charges and ionic radii are the principal factors in the general theory of elemental fractionation, this theory cannot explain the fractionation of these two element pairs with the same charges (i.e., 5+ for Nb and Ta, and 4+ for Zr and Hf) and essentially the same ionic size (i.e., RNb/RTa=1.000, Rzr/RHf=1.006 to -1.026 for coordination numbers of 6, 7, 8 and 12). We explore the possibilities of other factors and processes (e.g., mass-dependent fractionation during magmatism) that may cause the observed Nb-Ta and Zr-Hf fractionation. We emphasize that understanding the correlated Nb-Ta and Zr-Hf fractionation "known" to take place during magmatism is fundamental for improved understanding of elemental fractionations through other earth processes in various tectonic environments, including the origin and evolution of continental crust, which has a characteristic subchondritic Nb/Ta value of -11-12.
The effect of paleo-Pacific subduction on the geological evolution of the western Pacific and continental China is likely complex. Nevertheless, our analysis of the distribution of Mesozoic granitoids in the eastern continental China in space and time has led us to an interesting conclusion: The basement of the continental shelf beneath East and South China Seas may actually be of exotic origin geologically unrelated to the continental lithosphere of eastern China. By accepting the notion that the Jurassic- Cretaceous granitoids in the region are genetically associated with western Pacific subduction and the concept that subduction may cease to continue only if the trench is being jammed, then the termination of the granitoid magmatism throughout the vast region at -88±2 Ma manifests the likelihood of "sudden", or shortly beforehand (- 100 Ma), trench jam of the Mesozoic western Pacific subduction. Trench jam happens if the incoming "plate" or portion of the plate contains a sizeable mass that is too buoyant to subduct. The best candidate for such a buoyant and unsubductable mass is either an oceanic plateau or a micro-continent. We hypothesize that the basement of the Chinese continental shelf represents such an exotic, buoyant and unsubductable mass, rather than seaward extension of the continental lithosphere of eastern China. The locus of the jammed trench (i.e., the suture) is predictably located on the shelf in the vicinity of, and parallel to, the arc-curved coastal line of the southeast continental China. It is not straightforward to locate the locus in the northern section of the East China Sea shelf because of the more recent (〈20 Ma) tectonic re-organization associated with the opening of the Sea of Japan. We predict that the trench jam at - 100 Ma led to the re-orientation of the Pacific plate motion in the course of NNW direction as inferred from the age-progressive Emperor Seamount Chain of Hawaiian hotspot origin (its oldest unsubdued Meiji and Detroit seamounts are -82 M
Niu et al.[1]recently show that the basement of the Chinese continental shelf(beneath East China Sea and South China Sea)is geologically unrelated to the continental lithosphere of eastern China,but is of exotic origin.