We propose a scheme to coherently control the field-free orientation of NO molecule whose rotational temperature is above 0 K. It is found that the maximum molecular orientation is affected by two factors: one is the sum of the population of M = 0 rotational states and the other is their distribution, however, their distribution plays a much more significant role in molecular orientation than the sum of their population. By adopting a series of linearly polarized pulses resonant with the rotational states, the distribution of M = 0 rotational states is well rearranged. Though the number of pulses used is small, a relatively high orientation degree can be obtained. This scheme provides a promising approach to the achievement of a good orientation effect.
We theoretically investigate the photoelectron emission from an atom irradiated by an amplitude modulated sinusoidally phase-modulated pulse through solving the time-dependent Schr¨odinger equation in the momentum space. By controlling the phase amplitude of the pulse in the frequency domain, it can be found that the photoelectron spectra appear as explicit interference phenomena, which originated from the interference between the directly ionized electron and the ionization of the pre-excited atom from different subpulses.
Hai-Ying YuanFu-Ming GuoDi-Yu ZhangJun WangJi-Gen ChenYu-Jun Yang
Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.