Understanding stand structure and height-diameter relationship of trees provides very useful information to establish appropriate countermeasures for sustainable management of endangered forests. Populus euphratica, a dominant tree species along the Tarim River watershed, plays an irreplaceable role in the sustainable development of regional ecology, economy and society. However, as the result of climate changes and human activities, the natural riparian ecosystems within the whole river basin were degraded enormously, particularly in the lower reaches of the river where about 320 km of the riparian forests were either highly degraded or dead. In this study, we presented one of the main criteria for the assessment of vitality of P. euphrafica forests by estimating the defoliation level, and analyzed forest structure and determined the height-diameter (height means the height of a tree and diameter means the diameter at breast height (DBH) of a tree) relationship of trees in different vitality classes (i.e. healthy, good, medium, senesced, dying, dead and fallen). Trees classified as healthy and good ac- counted for approximately 40% of all sample trees, while slightly and highly degraded trees took up nearly 60% of total sample trees. The values of TH (tree height) and DBH ranged from 0-19 m and 0-125 cm, respectively. Trees more than 15 m in TH and 60 cm in DBH appeared sporadically. Trees in different vitality classes had different distribution patterns. Healthy trees were mainly composed more of relatively younger trees than of degraded tress. The height-diameter relationships differed greatly among tress in different vitality classes, with the coefficients ranging from 0.1653 to 0.6942. Correlation coefficients of TH and DBH in healthy and good trees were higher than those in trees of other vitality classes. The correlation between TH and DBH decreased with the decline of tree vitality. Our results suggested that it might be able to differentiate degraded P. euphratica trees from healthy trees
The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention
Sven GRASHEY-JANSENMartin KUBABernd CYFFKAmüt HALIKTayierjiang AISHAN