PG 1407+265 is a radio quiet quasar that has a relativistic jet.In this report,we show some peculiar properties of its optical and X-ray emissions,which indicate possible non-thermal origins produced from the jet.We use a simple synchrotron + synchrotron self Compton (SSC) model to fit the emissions with different ratios of energy densities between the magnetic field and electrons (η≡U B/U e),which predicts a different γ-ray luminosity.The First LAT AGN Catalog (1LAC) did not include PG 1407+265,which indicates an upper limit of γ-ray luminosity.This upper limit constrains the ratio to be unreasonably large (η≥10 4-5).This inversely indicates that the optical and X-ray emissions may not be produced from the beaming jet.We discuss the physical implications of these results.
CHEN Liang 1,2,3 & BAI JinMing 1,2 1 National Astronomical Observatories/Yunnan Observatory,Chinese Academy of Sciences,Kunming 650011,China
Swift GRB 100418A is a long burst at z = 0.624 without detection of any associated supernova (SN). Its light curves in both the prompt and afterglow phases are similar to GRB 060614, a nearby long GRB without an associated SN. We analyze the observational data of this event and discuss the possible origins of its multiwavelength emission. We show that its joint light curve at 1 keV derived from Swift BAT and XRT observations is composed of two distinguished components. The first component, whose spectrum is extremely soft (Γ = 4.32), ends with a steep decay segment, indicating the internal origin of this component. The second component is a slowly-rising, broad bump which peaks at ~ 10 5 s post the BAT trigger. Assuming that the late bump is due to onset of the afterglow, we derive the initial Lorentz factor (Γ 0 ) of the GRB fireball and find that it significantly deviates from the relation between the Γ 0 and isotropic gamma-ray energy derived from typical GRBs. We also check whether it follows the same anti-correlation between X-ray luminosity and the break time observed in the shallow decay phase of many typical GRBs, which is usually regarded as a signal of late energy injection from the GRB central engine. However, we find that it does not obey this correlation. We propose that the late bump could be contributed by a two-component jet. We fit the second component with an off-axis jet model for a constant medium density and find the late bump can be represented by the model. The derived jet half-opening angle is 0.30 rad and the viewing angle is 0.315 rad. The medium density is 0.05 cm 3 , possibly suggesting that it may be from a merger of compact stars. The similarity between GRBs 060614 and 100418A may indicate that the two GRBs are from the same population and the late bump observed in the two GRBs may be a signal of a two-component jet powered by the GRB central engine.