Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.
Current methods that utilize simple data or models to judge whether soil fertility can selfdevelop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S(Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26(29.21%) and 63(70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order lowquality forest improvement > arbor–bush–herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six(29.21%) were in the middle lobe, 10(11.24%) were in the upper lobe, and 53(70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as "Soil fertility can self-develop" whose area was 12.74 km2(28.33%) distributed mainly in the leftmost and rightmost parts, "Soil fertility tends to self-develop" whose area was 11.63 km2(25.89%) distributed m