On the basis of the current measurements from the moored Long Ranger ADCP in the upper 450 m layer and the deep current measurements at 2000 and 2300 m from the moored current meters with the time series data of about 7 months at the mooring station in the northeastern South China Sea, the spectral analyses and calculation have been made. The major results are as follows: (i) From the progressive vector diagrams of the observed daily currents at the water levels from 50 m to 400 m, its temporal variation of velocity rotated counterclockwise in most of the observing time. This agrees basically with the result from the qualitative analysis of the sea surface height data, which was obtained from TOPEX/ERS-2 altimeter data by CCAR. The daily and monthly average velocities are both the largest in November, next in October and minimum in August. (ii) At the 2000 and 2300 m levels, the daily and monthly average velocities are both the largest in January, next in September and minimum in August. From the seasonal change of currents, the current velocity is the strongest in winter (January-March), next in autumn, and weak in summer. (iii) There exists the variation of tidal current with the change of depth. In the upper layer, the height of diurnal peak is higher than that of semidiurnal peak. However, the semidiurnal peak is higher than the diurnal peak at the levels from 200 m to 400 m. In the layers above 450 m the clockwise component is dominant in their fluctuations. In the layers below 1500 m the diurnal peak is again higher than the semidiurnal peak. (iv) There is the prominent periodic fluctuation of more than two months in the layer from 50 m to 2300 m. The period of this prominent peak is 75 d and its fluctuation is counterclockwise in the upper 450 m layers, and is 68 d and 69 d at the depths of 2000 and 2300 m, respectively, and the counterclockwise component is dominant in their fluctuations. (v) There are the variations of periods fluctuating with the change of depth in the upper 450 m layers. For example, w
On the bisis of determining the there elements of thermocline ( depth [upper bound depth ], thickness and intensity ) and the maximum vertical temperature gradient of the surveying station, the paper calculates the mean temperature of the Nansha deep-water surveying station within the upper-bound depth layer of thermocline and the mean temperature below the lower-bound depth of thermocline between the 300m and 800m layers,respectively. Analysis indicates that the horizontal distribution of mean seawater temperature shows a distinct trend of the low-temperature seawater slowly moving from the northeast to the southeast of Nansha,which seems to have been driven by the Northeast Monsoon. The larger the vertical temperature radient is, the greater is its capability of preventing the heat of the upper seawater from diffusing into the deeper layers on the vertical direction.
The 28.6 d time series of ADCP currents at 27 depth levels, (11,15,…,115m) which are obtained from a mooring station at the northern South China Sea continental slope, have been decomposed into barotropic and baroclinic components. The emphasis in this paper is on the analysis of the time series of baroclinic currents by means of several methods,such as the tidal harmonic analysis, the power spectra and the kinetic energy estimation.The major results are as follows: (1) In respect of the baroclinic currents, the values of several parameters first decrease and then increase with depth. These parameters include the temporal mean value of the cross-shelf component, the standard deviations, the amplitudes of K1 constituents, the mean eddy kinetic energy, as well as the significant peaks of the power spectra of the cross-shelf components. (2) The diurnal period of the baroclinic currents is dominant. The diumal tidal current rotates clockwise and the major axis of current ellipse is located along the directions of NW-SE. The vertical distribution of the phases of the diurnal constituent varies with the different water layers. Around the 67m depth level, the phase changes very much.At those layers far away from the 67m depth level, the vertical distribution of the phase is relatively stable, but with opposite phases in the upper and lower water layers. For the upper layers between the surface and 67m,the phases are around 300°; for the lower layers between 67m and 115m, the phases are around 120° .(3) The mean eddy kinetic energy of the baroclinic current is quite large, accounting for 41% of the mean kinetic energy of the measured currents. The cross-shelf component is larger than the along-shelf one. The two baroclinic current components correspond to the major and minor axes of the current ellipse of the diurnal constituent respectively. (4) The power spectra of the baroclinic currents show a singnificant period of about 24h, with 23.6h at both 19m and 99m and 24.4h at 55m. The vertical distributions of the sign