Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.
Multiferroic properties in a polycrystalline terbium orthoferrite are investigated. Different thermomagnetic behaviors are observed in different magnetic fields, which is attributed to the suppression of the low temperature magnetic phase by an external magnetic field. Further studies reveal that the ferroelectricity originates from the spin configuration below 3.5 K. In addition, the magnetic field control of electric polarization and dielectric constant is observed, which suggests a magnetoelectric effect in TbFeO3. The origin of ferroelectricity in this rare-earth orthoferrite is discussed.
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
PengXiang ZhangGuFan YinYuYan WangBin CuiFeng PanCheng Song