The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.