A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ'a(G), is the least number of colors such that G has an acyclic edge k-coloring. Let G be a graph with maximum degree Δ and girth g(G), and let 1≤r≤2Δ be an integer. In this paper, it is shown that there exists a constant c > 0 such that if g(G)≥cΔ r log(Δ2/r) then χa(G)≤Δ + r + 1, which generalizes the result of Alon et al. in 2001. When G is restricted to series-parallel graphs, it is proved that χ'a(G) = Δ if Δ≥4 and g(G)≥4; or Δ≥3 and g(G)≥5.