Using the one-atom theory (OA) of pure metals, the atomic states of Ru metal with hcp structure, fcc structure, bcc structure and liquid state were determined as fol- lows: [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23,Ψa(fcc-Ru)=[Kr](4dn)3.70(4dc)2.44 (5sc)1.42(5sf)0.44, Ψ a(bcc-Ru)=[Kr](4dn)4.00(4dc)2.22(5sc)1.56(5sf)0.22, Ψ a(L-Ru)=[Kr](4dn)4.00(4dc)2.00(5sc)1.52 (5sf)0.48. The potential curve and physical properties as a function of temperature for hcp-Ru such as lattice constant, cohesive energy, linear thermal expansion coeffi- cient, specific heat and Gibbs energy and so on were calculated quantitatively. The theoretical results are in excellent agreement with experimental value. The rela- tionship between the atomic states and catalytic performance was explained qualitatively and these supplied the designation of Ru metal and relative materials with theoretical instruction and complete data.
According to the basic information of sequences of Ti and Al characteristic atoms in hcp Ti-Al system, the compositional variations of the electronic structure, atomic potential energies, atomic volumes, lattice constants and cohesive energies of the ordered hcp Ti3Al type alloys were calculated by the framework of systematic science of alloys(SSA). The electronic structure of the hcp Ti3Al compound consisted of ψ 4Thiand ψ 0Ahl atoms is 0.75[Ar] (3dn)0.573(3dc)2.1685(4sc)0.972(4sf)0.3093+0.25[Ne](3sc)1.32· (3pc)1.19(3sf)0.49. The factors of controlling lattice stability are electronic structure, atomic energies and atomic concentration. The Ti ψ 4hatoms play a determinative role in forming D019 structure with a=0.287 2 nm, c=0.456 4 nm, atomic cohesive energy ε=4.810 8 eV/atom and heat of formation △H=-0.332 8 eV/atom. These calculated values are in good agreement with experimental values (a=0.287 5 nm, c=0.46 0 nm, △H=-0.27, -0.29 eV/atom). The calculated cohesive energy of the hcp Ti3Al compound is slightly bigger than that of the fcc Ti3Al.This is a good sign that makes it feasible to stabilized L12 structure of the hcp Ti3Al compound by ternary element. The new element should have more dc-electrons than Ti-metal and occupy at the Ti-lattice points.