Consolidation deformation occurs in clay liners under the self-weight of wastes at a simple garbage dump or dredged sediment dump, which leads to a decrease in the porosity. However. the migration of contaminants in clay liners is influenced by the porosity. Thus, the impact of consolidation deformation of clay liners on the migration of contaminants cannot be ignored. Based on Biot's consolidation theory, the contaminant migration theory, and consideration of the three kinds of migration mechanisms of convection, diffusion, and adsorption, a one-dimensional migration model of contaminants in deforming porous media was established, and the finite difference method was adopted to obtain the numerical solutions for an established initial-boundary value problem. The impact of consolidation pressure on the migration law of a contaminant was studied. The results show that, regardless of adsorption modes, different consolidation pressures have similar impacts on the migration law of the contaminant. Namely, over a certain migration time, the greater the consolidation pressure is, the smaller the migration depth of the contaminant. The results also show that, while the migration time increases, the impact of a certain increment of consolidation pressure on the variation of contaminant concentration with the depth increases gradually and, while the migration depth increases, the impact of a certain increment of consolidation pressure on the variation of the contaminant concentration with time increases gradually.