An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube. For the particular case of an isolated armchair (10, 10) carbon nanotube, the scattered field predicted from this technique is in excellent agreement with the measured result. Furthermore, the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m, n) metallic carbon nanotubes.
We discuss the efficiency of an electro-optic (EO) polymer sensor with interdigitated coplanar electrodes. The developed EO sensor is used to detect terahertz radiation via EO sampling. Results show that the sensor improves more significantly detection sensitivity than does a sensor with sandwich configurations.