Fe nanowire arrays are prepared by electrodeposition in porous anodic aluminum oxide template from a composite electrolyte solution. These nanowires have an uniform diameter of approximate 25 nm and a length in excess of 2.5 μm. The micrographs and crystal structures of Fe nanowires are studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction(XRD). It is found that each nanowire is essentially a single crystal and has a different orientation in each array. Hysteresis loops of Fe nanowire array show that its easy magnetization direction is perpendicular to the sample plane.
Shaped silver nanoparticles with sphere, wire and dendrite were prepared by sonoelectrochemical deposition from an aqueous solution of AgNO3 in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) and polyvinylpyrrolidone (PVP). The diameter of spherical silver particles was about 30 nm. The diameter of the silver nanowires was also about 30 nm and the length was 200-900 nm. The dendrites were synthesized with the concentration of silver solution increasing. Silver nanoparticles were characterized by transmission electron microscope (TEM), X-ray powder diffraction (XRD), scanning probe microscope (SPM) and UV-vis absorption spectrum. XRD patterns revealed that silver particles were of face-centered cubic structure. UV-vis absorption spectra indicated that different morphology and size of silver particles could influence the optical properties.