General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make seismic forward modeling closer to real seismic records.
Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. In this paper, we derive a new PS-wave reflection coefficient approximation equation which is more accurate at larger incidence angles. The equation is simplified for small incidence angles, which makes AVO analysis clearer and easier for angles less than 30 degrees. Based on this approximation, a PP/PS joint inversion is introduced. A real data example shows that oil sands, brine sands and shales can be differentiated based on the P- to S-wave velocity ratio from the PP/PS joint inversion. Fluid factors and Poisson's ratio also indicate an anomaly in the target zone at the oil well location.
In this paper,we present a method of wavelet estimation by matching well-log, VSP,and surface-seismic data.It's based on a statistical model in which both input and output are contaminated with additive random noise.A coherency matching technique is used to estimate the wavelet.Measurements of goodness-of-fit and accuracy provide tools for quality control.A practical example suggests that our method is robust and stable.The matching and estimation of the wavelet is reliable within the seismic bandwidth.This method needs no assumption on the wavelet amplitude and phase and the main advantage of the method is its ability to determine phase.
Some recent publications presented a result suggesting that Zipingpu reservoir hastened the occurrence of the 2008 Ms8.0 Wenchuan earthquake by tens to hundreds of years. Their researches calculated the Coulomb stress change induced by Zipingpu reservoir on the rupturing fault of Wenchuan earthquake. Their results, however, are critically dependent upon the 3-D event location, reservoir location, and the fault plane orientation. We repeated Ge et al.'s work in this paper and found that an improper dip angle parameter of their 2-D fault model might lead to a wrong conclusion. Both the modeling results based on the 2-D model and 3-D model with proper fault parameters will show Coulomb stress changes alone were neither large enough nor had the correct orientation to affect the occurrence of Wenchuan earthquake, which supports our recent argument based on the local seismicity analysis and the induced Coulomb stress change calculation with a 3-D model.
We present a scheme to simulate SH-wave propagation in a whole-Earth model with arbitrary lateral heterogeneities employing the Fourier pseudospectral method. Wave equations are defined in two-dimensional cylindrical coordinates and the model is taken through a great circle of the Earth. Spatial derivatives in the wave equations are calculated in the wavenumber domain by multiplication, and the transformation between spatial and wavenumber domains is performed via fast Fourier transformation. Because of the high accuracy and high speed of the Fourier pseudospectral method, the scheme enables us to calculate a short-wavelength global SH-wavefield with accurate waveforms and arrival times for models with heterogeneities that can be approximated as azimuthally symmetric. Comparing with two-dimensional simulation methods based on an axisymmetric model, implementing the seismic source in the present scheme is more convenient. We calculated the global SH-wavefield for the preliminary reference Earth model to identify the generation, reflection and refraction of various seismic phases propagating in the Earth. Applications to a heterogeneous global model with low-velocity perturbation above the core-mantle boundary were conducted to analyze the effect of lateral heterogeneity on global SH-wave propagation.