Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints.
To improve the comprehensive mechanical properties of Mg-15AI magnesium alloy, different amounts (from 0 to 4.0wt.%) of Nd were added to the alloy and six Mg-15AI-xNd alloys were prepared by metal mould casting. The effect of Nd content on microstructure of the alloys was investigated by means of OM, SEM, EDS, TEM, and XRD. The tensile properties were tested at room temperature (RT) and high temperature (473 K). The results indicate that the primary a-Mg dendrite is significantly refined with the addition of Nd. The best refinement is reached at 1.0wt.% Nd content and the average dendrite arm spacing decreases from 80- 100 pm (without Nd addition) to -20 pm. A further increase in Nd content leads to the coarsening of the primary a-Mg dendrite. The addition of Nd improves the tensile properties of Mg-15AI both at RT and 473 K. The Mg-15AI alloy containing 1.0wt.% Nd exhibits the best tensile properties. Compared with the alloy without Nd, the yield and ultimate tensile strength of the Mg-15AI-1.0Nd alloy at RT increase from 132.3 to 148.6 MPa and 152.3 to 189.6 MPa, increase by 12.3% and 24.5%, respectively; and the elongation at RT increases from 0.05 % to 1.24%. The yield and tensile strength of the alloy at 473 K increase from 97.9 to 115.3 MPa and 121.6 to 140.1 MPa, increase by 15.2% and 20%, respectively. Further increment of Nd content to 1.5wt.% degrades the tensile properties, which is ascribed to grain coarsening and growth of the AI-Nd phase.