For the multisensor linear discrete time-invariant stochastic systems with correlated noises and unknown noise statistics,an on-line noise statistics estimator is presented by using the correlation method.Substituting it into the steady-state Riccati equation,the self-tuning Riccati equation is obtained.Using the Kalman filtering method,based on the self-tuning Riccati equation,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the dynamic error system analysis(DESA) method,it is proved that the self-tuning fusion white noise deconvolution estimator converges to the optimal fusion steadystate white noise deconvolution estimator in a realization,so that it has the asymptotic global optimality.A simulation example for Bernoulli-Gaussian input white noise shows its effectiveness.
对带相关观测噪声和未知噪声统计的多传感器系统,用相关方法得到噪声统计在线估值器.在按分量标量加权线性最小方差最优信息融合准则下,用现代时间序列分析方法,基于滑动平均(moving average)新息模型的辨识,提出了自校正解耦融合Wiener预报器.用动态误差系统分析(dynamic error system analysis)方法证明了自校正融合Wiener预报器收敛于最优融合Wiener预报器,因而它具有渐近最优性.它的精度比每个局部自校正Wiener预报器精度都高.它的算法简单,便于实时应用.一个目标跟踪系统的仿真例子说明了其有效性.
<正>For the multisensor linear discrete time-invariant systems with correlated measurement noises and with dif ...
Chenjian Ran ~1,ZiLi Deng~2 1.Department of Automation,Heilongjiang University,Harbin 150080 2.Department of Automation,Heilongjiang University,Harbin 150080
For the multi-sensor linear discrete time-invariant stochastic systems with correlated measurement noises and unknown noise statistics,an on-line noise statistics estimator is obtained using the correlation method.Substituting it into the optimal weighted fusion steady-state white noise deconvolution estimator based on the Kalman filtering,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the Dynamic Error System Analysis(DESA) method,it proved that the self-tuning fusion white noise deconvolution estimator converges to the steady-state optimal fusion white noise deconvolution estimator in a realization.Therefore,it has the asymptotically global optimality.A simulation example for the tracking system with 3 sensors and the Bernoulli-Gaussian input white noise shows its effectiveness.