A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction(IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo(MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization(OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast,and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration.
The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenu- ation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for con- verting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.
Single-photon emission computerized tomography and positron emission tomography are essential med- ical imaging tools, for which the sampling angle number and scan time should be carefully chosen to give a good compromise between image quality and radiopharmaceutical dose. In this study, the image quality of different ac- quisition protocols was evaluated via varied angle number and count number per angle with Monte Carlo simulation data. It was shown that, when similar imaging counts were used, the factor of acquisition counts was more important than that of the sampling number in emission computerized tomography. To further reduce the activity requirement and the scan duration, an iterative image reconstruction algorithm for limited-view and low-dose tomography based on compressed sensing theory has been developed. The total variation regulation was added to the reconstruction process to improve the signal to noise Ratio and reduce artifacts caused by the limited angle sampling. Maximization of the maximum likelihood of the estimated image and the measured data and minimization of the total variation of the image are alternatively implemented. By using this advanced algorithm, the reconstruction process is able to achieve image quality matching or exceed that of normal scans with only half of the injection radiopharmaceutical dose.
In a scintillation detector, scintillation crystals are typically made into a 2-dimensional modular array. The location of incident gamma-ray needs be calibrated due to spatial response nonlinearity. Generally, position histograms--the characteristic flood response of scintillation detectors are used for position calibration. In this paper, a position calibration method based on a crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed. Firstly, the position histogram is preprocessed, such as noise reduction and image enhancement. Then the processed position histogram is segmented into disconnected regions, and crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and the crystal position lookup table is generated. The scheme is evaluated by the whole-body positron emission tomography (PET) scanner and breast dedicated single photon emission computed tomography scanner developed by the Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and applicable to any configurations of scintillation detector.