Dimethomorph is a fungicide with high activity against Peronosporomycetes plant pathogens. The present study showed that dimethomorph is effective on controlling the oomycete fungal pathogen Pseudoperonospora cubensis causing downy mildew on cucumber. The fungicide did not affect zoospores discharge from sporangia of P. cubensis, but it strongly inhibited mycelial growth and sporangial production in vitro and increased lysis of zoospores. Dose of 2 mg L^-1 of dimethomorph was sufficient to inhibit mycelial growth and sporangial production of P. cubensis on leaf disks, 5 mg L^-1 was enough to lyse zoospores of P. cubensis, and 25 mg L^-1 was required to inhibit sporangial production on detached leaves. In whole plant tests, dimethomorph exhibited strong protective and curative activity. Dimethomorph when applied at a dose of 300 mg L^-1 for 1, 3, 5, 7 days before inoculation exhibited 100% efficacy on disease control. On the other hand, efficacies of 67.1 and 31.5% were obtained when the same dose of dimethomorph was applied for 1 and 3 days after inoculation, respectively. So dimethomorph had persistence effect on leaves for 7 days at least and exhibited strong protective and curative activity. Bioassay analyses showed that dimethomorph could be translocated in the xylem system, redistributed in the leaf, and penetrated from the upper surface to the lower surface of the leaf but could not be translocated in phloem system or transferred from the roots to leaves of cucumber plants in sufficient amounts for disease control. The biocharacteristics of dimethomorph make it well suitable for integration of a control programme against downy mildew disease on cucumber and as a component to delay other peronosporomycetes fungicide-resistance development.
WANG Han-cheng ZHOU Ming-guo WANG Jian-xin CHEN Chang-jun LI Hong-xia SUN Hai-yan
The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to be aware of the mechanism of azoxystrobin in inhibition on mycelial respiration and the influence of SHAM. The activity test of azoxystrobin and SHAM was carried out with a mycelial linear growth test and spore germination test. Other related biological properties were also observed. Inhibition of azoxystrobin and SHAM on 4 pathogens was determined by using SP-II oxygraph system. Azoxystrobin inhibited mycelial growth in Colletotrichum capsici, Botrytis cinerea, Rhizoctonia solani, and Magnaporthe grisea, respectively; it also inhibited conidia germination, and conidia production in C. capsici, B. cinerea M. grisea, and sclerotia formation in R. solani. Moreover, it created stayed pigment biosynthesis in C. capsici and M. grisea somehow. Salicylhydroxamic acid enhanced inhibition by azoxystrobin. An oxygen consuming test of the mycelia showed that azoxystrobin inhibited all the 4 fungi's respiration in the early stages. With the concentration rising up, the effectiveness increased. However, as time went on, the respiration of the mycelia treated with fungicides recovered and SHAM could not inhibit the oxygen consuming. This reaction between the mycelia and the fungicides appeared not to initiate alternative respiration but rather the other mechanism created a lack of efficacy.
JIN Li-hua CHEN Yu CHEN Chang-jun WANG Jian-xin ZHOU Ming-guo
Azoxystrobin acts as an inhibitor of electron transport by binding to the Qo center of cytochrome b (cyt b). Resistance to azoxystrobin was usually caused by the point mutation of cyt b gene or by the induction of alternative respiration. Oxygen consumption test for mycelia of Colletotrichum capsici showed that azoxystrobin inhibited mycelial respiration within 12 h; however, as time went on, the respiration of the mycelia recovered when the mycelia were treated with azoxystrobin and salicylhydroxamic acid (SHAM, a known inhibitor of alternative respiration), and the oxygen consumption of the mycelia could not be inhibited. Meanwhile, cytochrome b (cyt b) gene expression increased with the recovery of mycelial respiration. The increased cyt b gene expression might play a role in the development of resistance to azoxystrobin in C. capsici.