Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics.This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure.By constructing a proper Poincare map of the non-smooth system,an analytical expression of the Jacobian matrix of Poincare map is given.Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method.When the period is fixed and the coupling strength changes,the system undergoes stable,periodic,quasi-periodic,and hyper-chaotic solutions,etc.Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.