The mechanical behavior of inherently anisotropic shale rocks under Brazilian test conditions are investigated in this study based on experimental studies and numerical simulations. The effects of the weak lamination planes and interlayer bonding force of these layers on the failure strength and fracture patterns are studied systematically. Numerical simulations using particle flow code in two dimensions based on the discrete element method showed a good agreement with the experimental results in the failure strength and fracture patterns. The shale revealed strong anisotropic behavior with the failure strength perpendicular to the lamination plane greater than failure strength parallel to lamination plane. The failure strength of the different interlayer bonding force against the layer orientations changed significantly. Four types of fracture patterns were observed: curved fracture, broken-linear fracture, layeractivated fracture, and central-linear fracture. The observed fracture patterns are either or a combination of tensile and/or shear fractures. Increase in interlayer bonding strength decreased the quantity of micro cracks and this directly led to reduction in the anisotropic behavior. Overall the layer orientation and interlayer bonding force of the shale thus play a very important role in the anisotropic behavior of the shale.