In traditional cognitive radio(CR) network,secondary users(SUs) are always assumed to obey the rule of"introducing no interference to the primary users(PUs) ".However,this assumption may be not realistic as the CR devices becoming more and more intelligent nowadays.In this paper,with the concept of lighthanded CR,which is proposed to deal with the above mentioned problem by enforcing"punishment"to illegal CR transmissions,the action decisions of primary users(PUs) are modeled as a partially observable Markov decision process(POMDP),and the optimal spectrum allocation scheme with the objective of maximizing their reward is proposed,which is defined by the utility function.Furthermore,a reduced scheme with much smaller state space has been proposed in this paper for lower computational complexity.Extensive simulation results show that the proposed schemes improve the reward significantly compared to the existing scheme.
The intersubcarrier interference(ICI) degrades the performance of the pilot-aided channel estimation in fast time-varying orthogonal frequency division multiplexing(OFDM) systems.To solve the error propagation in joint channel estimation and data detection due to this ICI,a scheme of error propagation determined iterative estimation is proposed,where in the first iteration,Kalman filter based on signal to interference and noise is designed with ICI transformed to be part of the noise,and for the later iterations,a determined iterative estimation algorithm obtains an optimal output from all iterations using the iterative updating strategy.Simulation results present the significant improvement in the performance of the proposed scheme in high-mobility situation in comparison with the existing ones.
Cooperative relaying has played an important role in rapid evolution of wireless communications.The cooperative performance strongly depends on the selected relays.In this paper,we concentrate on relay selection in amplify-and-forward(AF)cooperative communication system,and an optimal multi-relay selection scheme is put forward to minimize the average symbol error rate(SER)of the system.Firstly,for the minimum average SER,on the basis of the statistic channel information,we define a parameter named equivalent channel gain which describes the channel status of two phases in the cooperative process.Then,under the constraint of equal power allocation,an optimal relay selection scheme is proposed in ascending order of equivalent channel gain(ECG).The scheme implies that the suitable number of relay nodes should be selected under the different signal-to-noise ratio(SNR)ranges to minimize the average SER.Computer simulation results show that the average SER rate of the proposed scheme is lower than these of the other schemes.