根据《工程岩体试验方法标准》(GP/T50266—1999)中建议的岩石单轴压缩试验加载速率,并结合天然气储库注气、采气循环过程的运营状态,利用MTS815 Flex Test GT岩石力学试验系统,以大理岩作为对比岩石,对作为天然气储库围岩的盐岩损伤卸载模量,进行单轴压缩加卸载试验和单轴压缩低周循环荷载试验研究;试验加载采用轴向荷载控制,每个试件均按7级不同应力幅值加卸载;低周循环荷载试验采用轴向荷载的正弦波控制加载,其频率为1.0 Hz,控制每级动荷载下的振动周次不低于30个循环。研究得到盐岩应力–应变滞回环均为条带状,在加卸载转折部位具有较大不可逆变形,对应弹性响应较慢;大理岩则均为尖叶状,在加卸载处对应弹性相应较快;盐岩的卸载模量测试得到的变化趋势在加卸载和低周循环荷载下相反,而大理岩测试结果则相同,并均随应力增加递减。测试结果表明,应力幅值的大小较循环周次的多少对盐岩不可逆变形增量的影响更加显著,研究得到储库运营中盐岩的损伤演化特征。
The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.
JU YangZHANG QinGangYANG YongMingXIE HePingGAO FengWANG HuiJie
CO2 mineralization and utilization is a new area for reducing the CO2 emissions.By reacting with natural mineral or industrial waste,CO2 can be transformed into valuable solid carbonate(such as calcium carbonate or magnesium carbonate)with recovery of some products simultaneously.In this paper,a novel method was proposed to mineralize CO2 by means of magnesium chloride with small energy consumption.In this method,magnesium chloride was firstly transformed into magnesium hydroxide by electrolysis.The formed magnesium hydroxide showed high reactivity to mineralize CO2.In our study,even at low concentration,CO2 can be effectively mineralized by this method,which makes it possible to directly mineralize flue gas CO2,avoiding the expensive process of CO2capture and purification.Moreover,valuable products such as hydromagnesite and nesquehonite can be recovered by this method.Because of the wide distribution of magnesium chloride in nature,large-scale CO2mineralization is potential by means of magnesium chloride.