Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tectonic activity, and tectonic evolution ofthe area of the Xiamen submarine tunnel, the strike NWW 295^(。), which is the main unfavorable geological structure that affects the safety of the tunnel construction; the macrogeological prediction concludes that weathered troughs and groundwater-rich zonesformed by its larger-scale fault fracture zones are the main unfavorable geological bodiesprovides a basis for preventing the geo-logical hazards in the tunnel construction.
WANG Jin-shanWANG LiLI YongZHANG Yan-xinCAO Zhi-gangLI Chun-liu
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.