虽然孪生支持向量机(Twin Support Vector Machine,TSVM)的处理速度优于传统的支持向量机,但其并没有考虑输入样本点对最优分类超平面所产生的不同影响。通过为每个训练样本赋予不同的样本重要性,以及减少样本点对非平行超平面的影响,提出了模糊加权孪生支持向量机(Fuzzy TSVM,FTSVM)。在UCI标准数据集上,对FTSVM进行了实验研究并与TSVM、FSVM和SVM方法进行了比较,实验结果表明FTSVM方法是有效的。
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性.