We examine the solar cycle distribution of major geomagnetic storms (Dst ≤ -100 nT), including intense storms at the level of -200 nT〈 Dst ≤ -100 nT, great storms at -300 nT〈 Dst ≤-200 nT, and super storms at Dst ≤ -300 nT, which occurred during the period of 1957-2006, based on Dst indices and smoothed monthly sunspot numbers. Statistics show that the majority (82%) of the geomagnetic storms at the level of Dst≤ -100 nT that occurred in the study pe- riod were intense geomagnetic storms, with 12.4% ranked as great storms and 5.6% as super storms. It is interesting to note that about 27% of the geomagnetic storms that occurred at all three intensity levels appeared in the ascending phase of a solar cycle, and about 73% in the descending one. Statistics also show that 76.9% of the intense storms, 79.6% of the great storms and 90.9% of the super storms occurred during the two years before a solar cycle reached its peak, or in the three years after it. The correlation between the size of a solar cycle and the percentage of major storms that occurred, during the period from two years prior to maximum to three years af- ter it, is investigated. Finally, the properties of the multi-peak distribution for major geomagnetic storms in each solar cycle is investigated.
Gui-Ming LeZi-Yu CaiHua-Ning WangZhi-Qiang YinPeng Li
This is a study designed to analyze the relationship between ground level enhancements(GLEs)and their associated solar active regions during solar cycles 22and 23.Results show that 90.3%of the GLE events that are investigated are accompanied by X-class flares,and that 77.4%of the GLE events originate from super active regions.It is found that the intensity of a GLE event is strongly associated with the specific position of an active region where the GLE event occurs.As a consequence,the GLE events having a peak increase rate exceeding 50%occur in a longitudinal range from W20 to W100.Moreover,the largest GLE events occur in a heliographic longitude at roughly W60.Additionally,an analysis is made to understand the distributional pattern of the Carrington longitude of the active regions that have generated the GLE events.
Short-term variations of the solar mean magnetic field(SMMF) were investigated through re-analyzing the data from the Wilcox Solar Observatory during the last four solar activity cycles using continuous wavelet transforms.We demonstrated the time-variable characters of short-term periods of SMMF. Our results indicate that the SMMF has main periods of about 27 and 13.5 days not only in the minimum and maximum years of each activity cycle, but also in the increase and decrease of the solar cycle. The result is partly different from the conclusion that the SMMF has dominant period of about 27 days during the solar maxima and about 13.5 days during the solar minimum years(Ye et al. in Solar Phys 279:411–418, 2012). The entire time span of SMMF was investigated and discussed further.
The daily sunspot numbers of the whole disk as well as the northern and southern hemispheres from 1945 January 1 to 2010 December 31 are used to investi- gate the temporal variation of rotational cycle length through the continuous wavelet transformation analysis method. Auto-correlation function analysis of daily hemi- spheric sunspot numbers shows that the southern hemisphere rotates faster than the northern hemisphere. The results obtained from the wavelet transformation analysis are that no direct relationship exists between the variation trend of the rotational cy- cle length and the solar activity in the two hemispheres and that the rotational cycle length of both hemispheres has no significant period appearing at 11 yr, but has a sig- nificant period of about 7.6 yr. Analysis concerning the solar cycle dependence of the rotational cycle length shows that acceleration seems to appear before the minimum time of solar activity in the whole disk and the northern hemisphere, respectively. Furthermore, the cross-correlation study indicates that the rotational cycle length of the two hemispheres has different phases, and that the rotational cycle length of the whole disk as well as the northern and southern hemispheres, also has phase shifts with corresponding solar activity. In addition, the temporal variation of the north-south (N- S) asymmetry of the rotational cycle length is also studied. This displays the same variation trend as the N-S asymmetry of solar activity in a solar cycle, as well as in the considered time interval, and has two significant periods of 7.7 and 17.5 yr. Moreover, the rotational cycle length and the N-S asymmetry of solar activity are highly corre- lated. It is inferred that the northern hemisphere should rotate faster at the beginning of solar cycle 24.
Jing-Lan Xie 1,2,Xiang-Jun Shi 1,2 and Jing-Chen Xu 1,21 National Astronomical Observatories /Yunnan Observatory,Chinese Academy of Sciences,Kunming 650011,China
The intensity-time profiles of solar proton events(SPEs) are grouped into three types in the present study. The Type-I means that the intensity-time profile of an SPE has one peak, which occurs shortly after the associated solar flare and coronal mass ejection(CME). The Type-II means that the SPE profile has two peaks: the first peak occurs shortly after the solar eruption, the second peak occurs at the time when the CME-driven shock reaches the Earth, and the intensity of the second peak is lower than the first one.If the intensity of the second peak is higher than the first one, or the SPE intensity increases continuously until the CME-driven shock reaches the Earth, this kind of intensity-time profile is defined as Type-III. It is found that most CMEs associated with Type-I SPEs have no geoeffectiveness and only a small part of CMEs associated with Type-I SPEs can produce minor(–50 n T ≤ Dst ≤–30 n T) or moderate geomagnetic storms(–100 n T≤ Dst ≤–50 n T), but never an intense geomagnetic storm(–200 n T ≤ Dst 〈-100 n T). However,most of the CMEs associated with Type-II and Type-III SPEs can produce intense or great geomagnetic storms(Dst ≤-200 n T). The solar wind structures responsible for the geomagnetic storms associated with SPEs with different intensity-time profiles have also been investigated and discussed.
Gui-Ming LeChuan LiYu-Hua TangLiu-Guan DingZhi-Qiang YinYu-Lin ChenYang-Ping LuMin-Hao ChenZhong-Yi Li