A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of ex- citons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the S1-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.
Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In this letter, a 14-mm gap semi-insulating GaAs PCSS biased under 20 kV is triggered by a 1064-nm laser with a repetition frequency of 30 Hz. Although the trigger condition is greater than the threshold of the lock-on effect, the high gain mode is not observed. The results indicate that the high gain mode of the PCSS is quenched by decreasing the remnant voltage of pulsed energy storage capacitor.