A problem that frequently occurs in biological experiments with laboratory animals is that some subjects are less susceptible to the treatment group than others. Finite mixture models have traditionally been used to describe the distribution of responses in treated subjects for such studies. In this paper, we first study the mixture normal model with multi-levels and multiple mixture sub-populations under each level, with particular attention being given to the model in which the proportions of susceptibility are related to dose levels, then we use EM-algorithm to find the maximum likelihood estimators of model parameters. Our results are generalizations of the existing results. Finally, we illustrate realistic significance of the above extension based on a set of real dose-response data.
In this paper, we propose a new risk measure which is based on the Or- licz premium principle to characterize catastrophe risk premium. The intention is to develop a formulation strategy for Catastrophe Fund. The logarithm equivalent form of reinsurance premium is regarded as the retention of reinsurer, and the differential earnings between the reinsurance premium and the reinsurer's retention is accumu- lated as a part of Catastrophe Fund. We demonstrate that the aforementioned risk measure has some good properties, which are further confirmed by numerical simu- lations in R environment.