In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.
In this paper, nonconforming quasi-Wilson finite element approximation to a class of nonlinear sine-Gordan equations is discussed. Based on the known higher accuracy results of bilinear element and different techniques from the existing literature, it is proved that the inner product △↓(u - Ih^1u), △↓vh) and the consistency error can be estimated as order O(h^2) in broken H^1 - norm/L^2 - norm when u ∈ H^3(Ω)/H^4(Ω), where Ih^1u is the bilinear interpolation of u, Vh belongs to the quasi-Wilson finite element space. At the same time, the superclose result with order O(h^2) for semi-discrete scheme under generalized rectangular meshes is derived. Furthermore, a fully-discrete scheme is proposed and the corresponding error estimate of order O(h^2 + τ^2) is obtained for the rectangular partition when u ∈ H^4(Ω), which is as same as that of the bilinear element with ADI scheme and one order higher than that of the usual analysis on nonconforming finite elements.
In this article, a nonconforming quadrilateral element (named modified quasi- Wilson element) is applied to solve the nonlinear schrSdinger equation (NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(ha) for broken Ha-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover, the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.