A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles.Given a list assignment L={L(v)|v∈V}of G,we say that G is acyclically L-colorable if there exists a proper acyclic coloringπof G such thatπ(v)∈L(v)for all v∈V.If G is acyclically L-colorable for any list assignment L with|L(v)|k for all v∈V(G),then G is acyclically k-choosable.In this paper,we prove that every planar graph G is acyclically 6-choosable if G does not contain 4-cycles adjacent to i-cycles for each i∈{3,4,5,6}.This improves the result by Wang and Chen(2009).