A new lane-level road modeling method based on cardinal spline is proposed for the special intersections which are covered by vegetation or artificial landscape in their central regions.First,cardinal spline curves are used to fit the virtual lanes inside special intersections,and an initial road model is established using a series of control points and tension parameters.Then,the progressive optimization algorithm is proposed to determine the final road model based on the initial model.The algorithm determines reasonable control points and optimal tension parameters according to the degree of road curvature changes,so as to achieve a balance between the efficiency and reliability of the road model.Finally,the proposed intersection model is verified and evaluated through experiments.The results show that this method can effectively describe the lane-level topological relationship and geometric details of this kind of special intersection where the central area is covered by vegetation or artificial landscape,and can achieve a good balance between the efficiency and reliability of the road model.
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system.
In order to realize an optimal balance between the efficiency and reliability requirements ofroad models,a road modeling method for digital maps based on cardinal spline is studied.First,the cardinal spline is chosen to establish an initial road model,which is specified by a series of control points and tension parameters.Then,in view of the initial road model,a gradual optimization algorithm,which can determine the reasonable control points and optimal tension parameters according to the degree of the change of road curvature,is proposed to determine the final road model.Finally,the proposed road modeling method is verified a d evaluated through experiments,and it is compared with the conventional method for digital maps based on the B-spline.The results show that the proposed method can resize a neaoptimal balance between the efficiency and reliability requirements.Compared with the conventional method based on the B-spline,this method occupies less data storage and achieves higher accuracy.