In this paper, we determine the derivation algebra and the automorphism group of the original deformative Schrodinger-Virasoro algebra, which is the semi-direct product Lie algebra of the Witt algebra and its tensor density module Ig(a, b).
The first cohomology group of generalized loop Virasoro algebras with coefficients in the tensor product of its adjoint module is shown to be trivial. The result is used to prove that Lie bialgebra structures on generalized loop Virasoro algebras are coboundary triangular. The authors generalize the results to generalized map Virasoro algebras.
For any complex parameters a and b,W(a,b)is the Lie algebra with basis{Li,Wi|i∈Z}and relations[Li,Lj]=(j i)Li+j,[Li,Wj]=(a+j+bi)Wi+j,[Wi,Wj]=0.In this paper,indecomposable modules of the intermediate series over W(a,b)are classified.It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module.Furthermore,if a∈/Q,an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of Wk’s.